The content of CO in the yellow phosphorus tail gas reaches up to 90%. Yellow phosphorus tails gas belongs to the ore smelting tail gas whose components are complicated and impurities are various. The existence of phosphorus and sulfur in the tail gas utilization may corrode the equipment and shorten the life of the catalyst, so the utilization rate is quite low.
The yellow phosphorus resource is abundant in China and deposit reaches 800-1000 thousand tons, which weighs 80% in the world. In absence of the efficiency and advanced purification technique and utilization mode, the yellow phosphorus plant only burns little tail gas to dry the raw material or for the boiler combustion but most of the tail gas is discharged, thus greatly wasting the resource, intensifying the environmental pollution and obstructing the energy saving and emission reduction.
Besides, the resource utilization of C1 chemical products
requires deep purification of the impurity in the raw gas, but
impurities such as phosphorus, sulfur, arsenic, cyanogens and fluorine
in the yellow phosphorus tail gas may result in the toxication of the
chemical catalyst and corrosion of the material. Purification depth of the impurity determines the utilization value of the yellow phosphorus tail gas.
Utilization mode of the tail gas depends on the purification degree. There are three existing purification techniques of the yellow phosphorus tail gas: the traditional alkali washing method can only be applied to the extensive purification; the temperature-change PSA method is complicated and consumes much energy; the general catalytic oxidation method may not realize the continuous dephosphorization and consumes much catalyst. Recently, in view of the atmosphere and purification situation of the yellow phosphorus tail gas, PIONEER has developed a brand new dephosphorization catalyst, the DePOx catalyst, which may realize the continuous dephosphorization with various impurities in the yellow phosphorus tail gas that the dephosphorization process is not renewed and is simple in the technique. The dephosphorized gas may be used in the combustion power generation or synthesis of the C1 chemical production in combination with other purification techniques.